DISC1 and increased PDE4B activity (1). Altered activity of PDE4B has been associated with schizophrenia and bipolar affective disorder. DISC1 interacts with the UCR2 domain of PDE4B and elevation of cellular cAMP leads to dissociation of PDE4B from DISC1 and in increase in PDE4B activity (1). PDE4B gene itself does not link to major depressive disorder (MDD) but elevated mRNA levels of PDE4B have been implicated in the pathophysiology of MDD (2).

References

Catalog # P92-318G
Lot # H296-2

Product Description

Recombinant human PDE4B (305-end) was expressed by baculovirus in Sf9 insect cells using an N-terminal GST tag. The gene accession number is NM_002600.

Gene Aliases

DPDE4; PDE4B5; PDEIVB; MGC126529; DKFZp686F2182

Formulation

Recombinant protein stored in 50mM Tris-HCl, pH 7.5, 150mM NaCl, 10mM glutathione, 0.1mM EDTA, 0.25mM DTT, 0.1mM PMSF, 25% glycerol.

Storage and Stability

Store product at –70°C. For optimal storage, aliquot target into smaller quantities after centrifugation and store at recommended temperature. For most favorable performance, avoid repeated handling and multiple freeze/thaw cycles.

Scientific Background

PDE4B is a member of the phosphodiesterase family of proteins that play a critical role in regulating intracellular levels of cAMP and has homology to the ‘dunce’ gene of Drosophila. The ‘dunce’ gene is one of several genes critical for normal learning and memory in the fly. Altered activity of PDE4B has been associated with schizophrenia and bipolar affective disorder. DISC1 interacts with the UCR2 domain of PDE4B and elevation of cellular cAMP leads to dissociation of PDE4B from DISC1 and in increase in PDE4B activity (1). PDE4B gene itself does not link to major depressive disorder (MDD) but elevated mRNA levels of PDE4B have been implicated in the pathophysiology of MDD (2).

Specific Activity

The specific activity of PDE4B was determined to be 538 nmol/min/mg as per activity assay protocol.

Purity

The purity was determined to be >70% by densitometry. Approx. MW 78kDa.

PDE4B, Active

Human recombinant protein expressed in Sf9 cells

Catalog Number P92-318G
Specific Activity 538 nmol/min/mg
Specific Lot Number H296-2

Purify

>70%

Concentration 0.1µg/µl

Stability

1yr at –70°C from date of shipment

Storage & Shipping

Store product at –70°C. For optimal storage, aliquot target into smaller quantities after centrifugation and store at recommended temperature. For most favorable performance, avoid repeated handling and multiple freeze/thaw cycles. Product shipped on dry ice.

To place your order, please contact us by phone 1-(604)-232-4600, fax 1-604-232-4601 or by email: orders@signalchem.com

www.signalchem.com

FOR IN VITRO RESEARCH PURPOSES ONLY. NOT INTENDED FOR USE IN HUMAN OR ANIMALS.
Activity Assay Protocol

Reaction Components

Active PDE4B (Catalog #: P92-31BG)
Active PDE4B (0.1µg/µl) diluted with 1X PDE-Glo™ Reaction Buffer and assayed as outlined in sample activity plot. (Note: these are suggested working dilutions and it is recommended that the researcher perform a serial dilution of Active PDE4B for optimal results).

100 mM IBMX Solution
Prepare 100 mM of 3-isobutyl-1-methylxanthine (IBMX) in 100% DMSO. Store aliquots at −20°C.

PDE-Glo™ Phosphodiesterase Assay Kit (Promega, Cat # V1361)
cAMP and cGMP solution, 1 mM
PDE-Glo™ Reaction Buffer, 5X
PDE-Glo™ Termination Buffer, 5X
PDE-Glo™ Detection Buffer, 5X
Protein Kinase A (PKA)
Kinase-Glo™ Substrate
Kinase-Glo™ Buffer

Assay Protocol

The PDE4B assay is performed using the PDE-Glo™ Phosphodiesterase Assay kit (Promega; Cat# V1361). The assay involves first a PDE4B reaction between an active PDE4B preparation and a cyclic nucleotide substrate (cAMP). Then PDE-Glo™ Termination Buffer and PDE-Glo™ Detection Buffer (which contains ATP, inactive PKA and PKA substrate) are added to the reaction. The cyclic nucleotide substrate remaining after the PDE4B reaction can bind to the inactive PKA regulatory subunit thereby releasing the active catalytic subunit of PKA. The active catalytic subunit of PKA then catalyzes phosphorylation of the PKA substrate in the presence of ATP which leads to a reduction in ATP level. In the final step, Kinase-Glo™ reagent is added to measure the Luciferase activity towards Luciferin and the luminescent signal produced is related to the amount of ATP remaining which is indirectly related to the activity of PDE4B.

Step 1. Thaw the Active PDE4B and PDE-Glo™ Phosphodiesterase Assay Kit reagents on ice.
Step 2. Prepare the following working solutions:
- Diluted active PDE4B with 1X PDE-Glo™ Reaction Buffer on ice
- 2µM cAMP substrate solution in 1X PDE-Glo™ Reaction Buffer at ambient temperature
- 1X PDE-Glo™ Termination Buffer in 10 mM IBMX solution at ambient temperature
- 1X PDE-Glo™ detection solution (mix 8µl PKA with 792µl water and 200µl 5X PDE-Glo™ Detection Buffer). Prepare immediately before use
- Kinase-Glo™ reagent by adding Kinase-Glo™ Buffer to Kinase-Glo™ Substrate at ambient temperature

Step 3. In a polystyrene 96-well plate, add the following components bringing the initial reaction volume up to 25µl:
- Component 1. 12.5µl of diluted Active PDE4B (Catalog #P92-31BG)
- Component 2. 12.5µl of 2µM cAMP solution (0.025 nmol cAMP used per assay)

Step 4. Set up a blank control as outlined in step 3 by excluding the addition of the diluted PDE preparation. Replace the PDE preparation with an equal volume of 1X PDE-Glo™ ReactionBuffer.

Step 5. Initiate the reaction by adding cAMP substrate solution and incubate the mixture at 30°C for 10 minutes on a plate shaker.

Step 6. Terminate the PDE reaction by adding 12.5µl of 1X PDE-Glo™ Termination Buffer. Mix well.

Step 7. Add 12.5µl of 1X PDE-Glo™ detection solution. Mix well and then incubate at ambient temperature for 20 minutes.

Step 8. After the incubation period, add 50µl of Kinase-Glo™ reagent mix and then incubate at ambient temperature for 10 min.

Step 9. Read the polystyrene 96-well reaction plate using the KinaseGlo Luminescence Protocol on a GloMax plate reader (Promega; Cat# E7031).

Step 10. Perform a cAMP standard curve. Determine RLU at each concentration. Then calculate the corresponding nmol cAMP remaining after the PDE reaction from the standard curve.

Step 11. Calculate the PDE specific activity as outlined below.

PDE Specific Activity (SA) (nmol/min/mg) = [cAMP total (nmol) - cAMP remaining (nmol)] / (Reaction time in min)*(Enzyme amount in mg)

To place your order, please contact us by phone 1-(604)-232-4600, fax 1-604-232-4601 or by email: orders@signalchem.com

www.signalchem.com

FOR IN VITRO RESEARCH PURPOSES ONLY. NOT INTENDED FOR USE IN HUMAN OR ANIMALS.