

Product Name	Cat #
ASK1, Active	M13-11G
BMP2K Protein	B03-11G
BMPR2, Active	B06-11H
c-JUN Protein	J05-55G
DUSP22 (MKPX), Active	D22-20G
GCK, Active	M24-10G
GLK, Active	M25-11G
HGK, Active	M26-11G
HSF1 Protein	H25-30G
JNK1, Active	M33-10G
JNK1, Unactive	M33-14G
JNK2, Active	M34-10BG
JNK2, Unactive	M34-14G
JNK3, Active	M35-10BG
JNK3, Unactive	M35-14G
MEKK1, Active	M09-11G
MEKK2, Active	M10-10G
MEKK3, Active	M11-10G
MEKK6, Active	M14-11G
MLK1, Active	M17-11G

Product Name	Cat #
MLK2, Active	M18-11G
MLK3, Active	M19-11G
MLK4, Active	M48-11G
MST1, Active	S25-10G
MST3, Active	S42-11G
MST4, Active	M59-10G
NFATC1 Protein	N12-30G
p53 Protein	P05-30BG
p53 Protein	P05-30G
p63 Protein	P06-30G
p73 alpha Protein	P08-30G
p73 beta Protein	P08-30BG
p73 gamma Protein	P08-30CG
RGS1 Protein	R39-30H
RIPK1 Protein	R07-34G
RIPK2, Active	R08-11G
RIPK3, Active	R09-10G
RIPK5, Active	R27-10G
SMAD1 Protein	S10-30G
SMAD2 Protein	S11-30G

Cat #
S12-30G
S13-30G
S14-30G
S17-30G
S24-10G
M15-13G
T24-11G
T25-11G
T26-11G
T07-11G
T07-35G
T08-11G
T29-34G
T57-30H
V14-31G
V01-10G
V02-11G
V03-30G
Z01-10G

JNK/SAPK Pathway

JNK/SAPK is a member of the MAPK family, which was originally identified as a stress-activated kinase linked to the death response (1). There are three isoforms of JNK/SAPK; these include: JNK1, JNK2, and JNK3. Activated JNK/SAPK can translocate to the nucleus where it can regulate the activity of multiple transcription factors including c-Jun, ATF-2, SMAD4, p53 and ELK1. More recently, JNK/SAPK has been shown to have additional cellular functions such as key role on cell growth, differentiation and survival.

JNK/SAPK is a central component in the JNK/SAPK signaling pathway. The pathway can be activated by various stimuli such as a variety of environment stresses, inflammatory cytokines, growth factors and GPCR agonists can activate this target and the pathway (2).

A variety of environmental stimuli impact the small GTPases of the Rho family (Rac, Rho and cdc42) in the cell membrane which, in turn lead to the activation of membrane proximal protein components such as MEKKs, ASK1, TAK1/TAB1 or MLK3. These protein kinases then phosphorylate and activate MKK4/7, which mediates the activation of the JNK/SAPK family members (3).

JNK/SAPK dysregulation, as a result of oxidative stress, plays an important role in the increased phosphorylation of cytoskeletal proteins found in Alzheimer's disease (AD) (4). In hippocampal and cortical regions of individuals with severe AD, activated phospho-JNK/SAPK becomes localized exclusively in association with neurofibrillar alterations including neurofibrillary tangles, senile plaque neurites, neuropil threads and granulovacuolar degeneration structures, completely overlapping with tau-positive neurofibrillary pathology.

Therefore, targeting the JNK/SAPK signaling pathway may offer an effective therapy for pathological conditions of the central nervous system (CNS) (5). Recent genetic evidence and emerging pharmacological data indicate that activated JNK could also be critical in causing diabetes, insulin resistance and obesity (6).

REFERENCES

- 1. Basu, S. et al: Stress signals for apoptosis: Ceramide and c-Jun kinase. Oncogene. 1998 Dec 24;17(25):3277-85.
- 2. Nishina, H. et al: Physiological roles of SAPK/JNK signaling pathway. J Biochem (Tokyo). 2004 Aug;136(2):123-6.
- 3. Wada, T. et al: Stress kinase MKK7: Savior of cell cycle arrest and cellular senescence. Cell Cycle. 2004 May;3(5):577-9.
- 4. Zhu, X. et al: Activation and redistribution of c-Jun N-terminal kinase/stress activated protein kinase in degenerating neurons in Alzheimer's disease. J Neurochem. 2001 Jan;76(2):435-41.
- 5. Zhang, G. Y. et al: Agents targeting c-Jun N-terminal kinase pathway as potential neuroprotectants. Expert Opin Investig Drugs. 2005 Nov;14(11):1373-83.
- 6. Bennett, B. L. et al: JNK: A new therapeutic target for diabetes. Curr Opin Pharmacol. 2003 Aug;3(4):420-5.

Products for All Seven Kinase Families

TK, TKL, STE, CK1, AGC, CAMK, and CMGC

- HIGH SPECIFIC ACTIVITY

 Good Signal to Noise Ratio = Greater Utility
- HIGH PURITY

 Low Non-Specific Interference = Larger Success

20140115

phone: **1.604.232**.4600

email: ORDERS@SIGNALCHEM.COM

toll free: 1.866.9.KINASE