**CSK, Active**

Full-length recombinant protein expressed in Sf9 cells

**Catalog # C63-10G**  
Lot # A1171-4

**Product Description**

Recombinant full-length human CSK was expressed by baculovirus in Sf9 insect cells using an N-terminal GST tag. The gene accession number is NM_004383.

**Gene Aliases**

None

**Formulation**

Recombinant protein stored in 50mM Tris-HCl, pH 7.5, 150mM NaCl, 10mM glutathione, 0.1mM EDTA, 0.25mM DTT, 0.1mM PMSF, 25% glycerol.

**Storage and Stability**

Store product at –70°C. For optimal storage, aliquot target into smaller quantities after centrifugation and store at recommended temperature. For most favorable performance, avoid repeated handling and multiple freeze/thaw cycles.

**Scientific Background**

CSK is a cytoplasmic tyrosine kinase that has been shown to downregulate the tyrosine kinase activity of the c-src through tyrosine phosphorylation of the c-src carboxy terminus (1). A yeast 2-hybrid system has been used to identify proteins associated with CSK. The Src homology-3 (SH3) domain of CSK associates with a proline-rich region of PEP, a protein-tyrosine phosphatase expressed in hemopoietic cells (2). This association is highly specific and it is speculated that PEP may be an effector and/or regulator of CSK in T cells and other hemopoietic cells.

**References**


**Specific Activity**

![Graph showing specific activity vs. protein concentration]

The specific activity of CSK was determined to be 365 nmol/min/mg as per activity assay protocol.

**Purity**

![Image of Coomassie stained SDS-PAGE gel]

The purity of CSK was determined to be >90% by densitometry. Approx. MW 75kDa.

**CSK, Active**

Full-length recombinant protein expressed in Sf9 cells

**Catalog # C63-10G**  
**Specific Activity** 365 nmol/min/mg

**Specific Lot # A1171-4**

- **Purity**: >90%
- **Concentration**: 0.1µg/µl
- **Stability**: 1yr at –70°C from date of shipment

**Storage & Shipping**

Store product at –70°C. For optimal storage, aliquot target into smaller quantities after centrifugation and store at recommended temperature. For most favorable performance, avoid repeated handling and multiple freeze/thaw cycles. Product shipped on dry ice.
Activity Assay Protocol

Reaction Components

Active Kinase (Catalog #: C63-10G)
Active CSK (0.1µg/µl) diluted with Kinase Dilution Buffer IV (Catalog #: K24-09) and assayed as outlined in sample activity plot. (Note: these are suggested working dilutions and it is recommended that the researcher perform a serial dilution of Active CSK for optimal results).

Kinase Dilution Buffer IV (Catalog #: K24-09)
Kinase Assay Buffer II (Catalog #: K02-09) diluted at a 1:4 ratio (5X dilution) with 50ng/µl BSA solution.

Kinase Assay Buffer II (Catalog #: K02-09)
Buffer components: 25mM MOPS, pH 7.2, 12.5mM β-glycerol-phosphate, 20mM MgCl₂, 25mM MnCl₂, 5mM EGTA, 2mM EDTA. Add 0.25mM DTT to Kinase Assay Buffer prior to use.

Substrate (Catalog #: P61-58)
Poly (4:1 Glu, Tyr) synthetic peptide substrate diluted in distilled H₂O to a final concentration of 1mg/ml.

[³³P]-ATP Assay Cocktail
Prepare 250µM [³³P]-ATP Assay Cocktail in a designated radioactive working area by adding the following components: 150µl of 10mM ATP Stock Solution (Catalog #: A50-09), 100µl [³³P]-ATP (1mCi/100µl), 5.75ml of Kinase Assay Buffer II (Catalog #: K02-09). Store 1ml aliquots at −20°C.

10mM ATP Stock Solution (Catalog #: A50-09)
Prepare ATP stock solution by dissolving 55mg of ATP in 10ml of Kinase Assay Buffer II (Catalog #: K02-09). Store 200µl aliquots at –20°C.

Assay Protocol

Step 1. Thaw [³³P]-ATP Assay Cocktail in shielded container in a designated radioactive working area.
Step 2. Thaw the Active CSK, Kinase Assay Buffer, Substrate and Kinase Dilution Buffer on ice.
Step 3. In a pre-cooled microfuge tube, add the following reaction components bringing the initial reaction volume up to 20µl:
   Component 1. 10µl of diluted Active CSK (Catalog #C63-10G)
   Component 2. 5µl of 1mg/ml stock solution of substrate (Catalog #P61-58)
   Component 3. 5µl distilled H₂O (4°C)

Step 4. Set up the blank control as outlined in step 3, excluding the addition of the substrate. Replace the substrate with an equal volume of distilled H₂O.
Step 5. Initiate the reaction by the addition of 5µl [³³P]-ATP Assay Cocktail bringing the final volume up to 25µl and incubate the mixture in a water bath at 30°C for 15 minutes.
Step 6. After the 15 minute incubation period, terminate the reaction by spotting 20µl of the reaction mixture onto individual pre-cut strips of phosphocellulose P81 paper.
Step 7. Air dry the pre-cut P81 strip and sequentially wash in a 1% phosphoric acid solution (dilute 10ml of phosphoric acid and make a 1L solution with distilled H₂O) with constant gentle stirring. It is recommended that the strips be washed a total of 3 intervals for approximately 10 minutes each.
Step 8. Count the radioactivity on the P81 paper in the presence of scintillation fluid in a scintillation counter.
Step 9. Determine the corrected cpm by removing the blank control value (see Step 4) for each sample and calculate the kinase specific activity as outlined below.

Calculation of [P³³]-ATP Specific Activity (SA) (cpm/pmol)
Specific activity (SA) = cpm for 5µl [³³P]-ATP / pmoles of ATP (in 5µl of a 250µM ATP stock solution, i.e., 1250 pmoles)

Kinase Specific Activity (SA) (pmol/min/µg or nmol/min/mg)
Corrected cpm from reaction / [(SA of [³³P]-ATP in cpm/pmol) *(Reaction time in min) *(Enzyme amount in µg or mg)] * [(Reaction Volume) / (Spot Volume)]