CAMK2α, Active

Full-length recombinant protein expressed in Sf9 cells

Catalog # C11-10G
Lot # C090-1

Product Description

Recombinant full-length human CAMK2α was expressed by baculovirus in Sf9 cells using an N-terminal GST tag. The gene accession number is NM_171825.

Gene Aliases

CAMKA; KIAA0968

Formulation

Recombinant protein stored in 50mM Tris-HCl, pH 7.5, 150mM NaCl, 0.25mM DTT, 0.1mM EGTA, 0.1mM EDTA, 0.1mM PMSF, 25% glycerol.

Storage and Stability

Store product at –70°C. For optimal storage, aliquot target into smaller quantities after centrifugation and store at recommended temperature. For most favorable performance, avoid repeated handling and multiple freeze/thaw cycles.

Scientific Background

CAMK2α is a ser/thr protein kinase that is a member of the Ca^{2+}/calmodulin-dependent protein kinase family. CAMK2α is abundant in the brain as a major constituent of the postsynaptic density and is required for hippocampal long-term potentiation (LTP) and spatial learning. In addition to its Ca^{2+}/calmodulin-dependent activity, CAMK2α can undergo autophosphorylation, resulting in Ca^{2+}/calmodulin-independent activity. The protein level of CAMK2α fluctuates during neuronal activity in cultured rat pup hippocampal neurons. The levels of CAMK2α increased with heightened neuronal activity (2).

References

To place your order, please contact us by phone 1-(604)-232-4600, fax 1-604-232-4601 or by email: orders@signalchem.com

www.signalchem.com

FOR IN VITRO RESEARCH PURPOSES ONLY. NOT INTENDED FOR USE IN HUMAN OR ANIMALS.
Activity Assay Protocol

Reaction Components

Active Kinase (Catalog #: C11-10G)
Active CAMK2α (0.1µg/µl) diluted with Kinase Dilution Buffer III (Catalog #: K23-09) and assayed as outlined in sample activity plot. (Note: these are suggested working dilutions and it is recommended that the researcher perform a serial dilution of Active CAMK2α for optimal results).

Kinase Dilution Buffer III (Catalog #: K23-09)
Kinase Assay Buffer I (Catalog #: K01-09) diluted at a 1:4 ratio (5X dilution) with 50 ng/µl BSA solution.

Kinase Assay Buffer I (Catalog #: K01-09)
Buffer components: 25mM MOPS pH 7.2, 12.5mM β-glycerol-phosphate, 25mM MgCl₂, 5mM EGTA, 2mM EDTA. Add 0.25mM DTT to Kinase Assay Buffer prior to use.

[32P]-ATP Assay Cocktail
Prepare 250µM [32P]-ATP Assay Cocktail in a designated radioactive working area by adding the following components: 150µl of 10mM ATP Stock Solution (Catalog #: A50-09), 100µl [32P]-ATP (1mCi/100µl), 5.75ml of Kinase Assay Buffer I (Catalog #: K01-09). Store 1ml aliquots at –20°C.

10mM ATP Stock Solution (Catalog #: A50-09)
Prepare ATP stock solution by dissolving 55mg of ATP in 10ml of Kinase Assay Buffer I (Catalog #: K01-09). Store 200µl aliquots at –20°C.

Substrate (Catalog #: A15-58)
Autocamtide 2 synthetic peptide substrate (KKALRRQETVDAL-amide) diluted in distilled H₂O to a final concentration of 1mg/ml.

Assay Protocol

1. Thaw [32P]-ATP Assay Cocktail in shielded container in a designated radioactive working area.
2. Thaw the Active CAMK2α, Kinase Assay Buffer, Substrate and Kinase Dilution Buffer on ice.
3. In a pre-cooled microfuge tube, add the following reaction components bringing the initial reaction volume up to 20µl:
 - Component 1. 10µl of diluted Active CAMK2α (Catalog #:C11-10G)
 - Component 2. 7.5µl of 1mg/ml stock solution of substrate (Catalog #:A15-58)
 - Component 3. 2.5µl of Ca²⁺/Calmodulin Solution, 10x (Catalog #:C02-39)
4. Set up the blank control as outlined in step 3, excluding the addition of the substrate. Replace the substrate with an equal volume of distilled H₂O.
5. Initiate the reaction by the addition of 5µl [32P]-ATP Assay Cocktail bringing the final volume up to 25µl and incubate the mixture in a water bath at 30°C for 15 minutes.
6. After the 15 minute incubation period, terminate the reaction by spotting 20µl of the reaction mixture onto individual pre-cut strips of phosphocellulose P81 paper.
7. Air dry the pre-cut P81 strip and sequentially wash in a 1% phosphoric acid solution (dilute 10ml of phosphoric acid and make a 1L solution with distilled H₂O) with constant gentle stirring. It is recommended that the strips be washed a total of 3 intervals for approximately 10 minutes each.
8. Count the radioactivity on the P81 paper in the presence of scintillation fluid in a scintillation counter.
9. Determine the corrected cpm by removing the blank control value (see Step 4) for each sample and calculate the kinase specific activity as outlined below.

Calculation of [P³²]-ATP Specific Activity (SA) (cpm/pmol)
Specific activity (SA) = cpm for 5µl [32P]-ATP / pmoles of ATP (in 5µl of a 250µM ATP stock solution, i.e., 1250 pmoles)

Kinase Specific Activity (SA) (pmol/min/µg or nmol/min/mg)
Corrected cpm from reaction / [(SA of [32P]-ATP in cpm/pmol)*[Reaction time in min]*[Enzyme amount in µg or mg)]*[(Reaction Volume) / (Spot Volume)]