

Catalog # Aliquot Size

L03-10G-05 L03-10G-10 5 μg 10 μg

LCK, Active

Full-length human recombinant protein expressed in Sf9 cells

Catalog # L03-10G Lot # C1959-3

Product Description

Recombinant full-length human LCK was expressed by baculovirus in Sf9 insect cells using an N-terminal GST tag. The gene accession number is NM_005356.

Gene Aliases

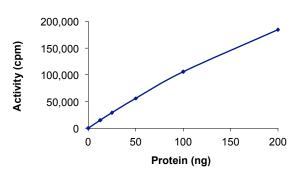
YT16, p56lck, pp58lck

Formulation

Recombinant protein stored in 50mM Tris-HCl, pH 7.5, 150mM NaCl, 10mM glutathione, 0.1mM EDTA, 0.25mM DTT, 0.1mM PMSF, 25% glycerol.

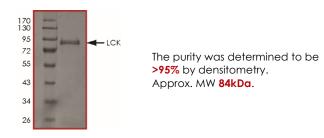
Storage and Stability

Store product at -70°C. For optimal storage, aliquot target into smaller quantities after centrifugation and store at recommended temperature. For most favorable performance, avoid repeated handling and multiple freeze/thaw cycles.


Scientific Background

LCK (p56lck) is a member of the src family of non-receptor tyrosine kinases. It was identified as a gene rearranged and overexpressed in the murine lymphoma LSTRA, most likely as a result of the insertion of Moloney murine leukemia virus DNA immediately adjacent to the gene (1). LCK behaves as a proto-oncogene and can lead to cell transformation upon activation. A number of human cancer cell lines show overexpression of LCK, pointing to a possible role for this kinase in the initiation and maintenance of the transformed state in human cancers (2).

References


- Fischer, S. et al: The amino terminal region of the p56 lck from LSTRA exerts negative modulation on the tyrosine kinase activity. Biochem Biophys Res Commun. 1987 Mar 30;143(3):819-26.
- 2. Veillette, A. et al: Expression of the lck tyrosine kinase gene in human colon carcinoma and other non-lymphoid human tumor cell lines. Oncogene Res. 1987 Sep-Oct;1(4):357-74.

Specific Activity

The specific activity of LCK was determined to be **180 nmol** /min/mg as per activity assay protocol.

Purity

LCK, Active

Full-length humanrecombinant protein expressed in Sf9 cells

Catalog # L03-10G Specific Activity 180 nmol/min/mg

Lot # C1959-3 Purity >95%

Concentration 0.1µg/µl

Stability 1yr at -70°C from date of shipment Storage & Shipping Store product at -70°C. For opt

Store product at -70°C. For optimal storage, aliquot target into smaller quantities after centrifugation and store at recommended temperature. For most favorable performance, avoid repeated handling and multiple freeze/thaw cycles. Product shipped on dry ice.

To place your order, please contact us by phone 1-(604)-232-4600, fax 1-604-232-4601 or by email: orders@signalchem.com www.signalchem.com

Activity Assay Protocol

Reaction Components

Active Kinase (Catalog #: L03-10G)

Active LCK ($0.1\mu g/\mu l$) diluted with Kinase Dilution Buffer III (Catalog #: K23-09) and assayed as outlined in sample activity plot. (Note: these are suggested working dilutions and it is recommended that the researcher perform a serial dilution of Active LCK for optimal results).

Kinase Dilution Buffer III (Catalog #: K23-09)

Kinase Assay Buffer I (Catalog #: K01-09) diluted at a 1:4 ratio (5X dilution) with 50 ng/µl BSA solution.

Kinase Assay Buffer I (Catalog #: K01-09)

Buffer components: 25mM MOPS, pH 7.2, 12.5mM β-glycerol-phosphate, 25mM MgC1₂, 5mM EGTA, 2mM EDTA. Add 0.25mM DTT to Kinase Assay Buffer prior to use.

[33P1-ATP Assav Cocktail

Prepare 250 μ M [33 P]-ATP Assay Cocktail in a designated radioactive working area by adding the following components: 150 μ l of 10mM ATP Stock Solution (Catalog #: A50-09), 100 μ l [33 P]-ATP (1mCi/100 μ l), 5.75ml of Kinase Assay Buffer I (Catalog #: K01-09). Store 1ml aliquots at -20°C.

10mM ATP Stock Solution (Catalog #: A50-09)

Prepare ATP stock solution by dissolving 55mg of ATP in 10ml of Kinase Assay Buffer I (Catalog #: K01-09). Store 200 μ l aliquots at -20°C.

Substrate (Catalog #: P61-58)

Poly (Glu_4 , Tyr_1) synthetic peptide substrate diluted in distilled H_2O to a final concentration of 1mg/ml.

Assay Protocol

- Step 1. Thaw [33P]-ATP Assay Cocktail in shielded container in a designated radioactive working area.
- Step 2. Thaw the Active LCK, Kinase Assay Buffer, Substrate and Kinase Dilution Buffer on ice.
- Step 3. In a pre-cooled microfuge tube, add the following reaction components bringing the initial reaction volume up to 20ul:

Component 1. 10µl of diluted Active LCK (Catalog #L03-10G)

Component 2. 5µl of 1mg/ml stock solution of substrate (Catalog #P61-58)

Component 3. 5µl distilled H₂O (4°C)

- Step 4. Set up the blank control as outlined in step 3, excluding the addition of the substrate. Replace the substrate with an equal volume of distilled H₂O.
- Step 5. Initiate the reaction by the addition of 5μl [33P]-ATP Assay Cocktail bringing the final volume up to 25μl and incubate the mixture in a water bath at 30°C for 15 minutes.
- **Step 6.** After the 15 minute incubation period, terminate the reaction by spotting 20µl of the reaction mixture onto individual pre-cut strips of phosphocellulose P81 paper.
- Step 7. Air dry the pre-cut P81 strip and sequentially wash in a 1% phosphoric acid solution (dilute 10ml of phosphoric acid and make a 1L solution with distilled H₂O) with constant gentle stirring. It is recommended that the strips be washed a total of 3 intervals for approximately 10 minutes each.
- Step 8. Count the radioactivity on the P81 paper in the presence of scintillation fluid in a scintillation counter.
- **Step 9.** Determine the corrected cpm by removing the blank control value (see Step 4) for each sample and calculate the kinase specific activity as outlined below.

Calculation of [P³³]-ATP Specific Activity (SA) (cpm/pmol)

Specific activity (SA) = cpm for 5µl [33P]-ATP / pmoles of ATP (in 5µl of a 250 µM ATP stock solution, i.e., 1250 pmoles)

Kinase Specific Activity (SA) (pmol/min/μg or nmol/min/mg)

Corrected cpm from reaction / [(SA of ^{33}P -ATP in cpm/pmol)*(Reaction time in min)*(Enzyme amount in μg or mg)]*[(Reaction Volume)]

To place your order, please contact us by phone 1-(604)-232-4600, fax 1-604-232-4601 or by email: orders@signalchem.com www.signalchem.com