TPM3-PDGFR beta, Active
Recombinant human fusion protein expressed in Sf9 cells

Catalog # P13-19DG
Lot # K1730-1

Product Description
Recombinant human TPM3-PDGFRB, the fusion protein [TPM3 (1-258)-PDGFRB (528-end)], was expressed by baculovirus in Sf9 insect cells using an N-terminal GST tag. The TPM3 gene accession number is NM_152263 and PDGFRB’s one is NM_002609.

Gene Aliases
TPM3: CAPM1; CFTD; hscp30; NEM1; OK/SW-cl.5; TM-5; TM3; TM30; TM30nm; TM5; TPMsk3
PDGFRB: JTK12, PDGFR, CD140B, PDGFR1, PDGF-R-beta

Formulation
Recombinant protein stored in 50mM Tris-HCl, pH 7.5, 150mM NaCl, 10mM glutathione, 0.1mM EDTA, 0.25mM DTT, 0.1mM PMSF, 25% glycerol.

Storage and Stability
Store product at –70°C. For optimal storage, aliquot target into smaller quantities after centrifugation and store at recommended temperature. For most favorable performance, avoid repeated handling and multiple freeze/thaw cycles.

Scientific Background
TPM3 is an actin-binding protein that mediates myosin-actin response to calcium ions in skeletal muscles. PDGFRB is a receptor tyrosine kinase of the PDGFR family that binds members of the platelet-derived growth factor family. PDGFRB is located at chromosome 5q31-33, and has been reported to have at least 18 fusion partners. It was uncovered that the TPM3 gene at 1q21 as a PDGFRB partner in chronic eosinophilic leukemia (CEL).

References

Specific Activity
The specific activity of TPM3-PDGFRB was determined to be 4.6 nmol/min/mg as per activity assay protocol.

Purity
The purity of TPM3-PDGFRB was determined to be >70% by densitometry, approx. MW 150 kDa.

<table>
<thead>
<tr>
<th>Catalog #</th>
<th>Aliquot Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>P13-19DG-05</td>
<td>5 µg</td>
</tr>
<tr>
<td>P13-19DG-10</td>
<td>10 µg</td>
</tr>
</tbody>
</table>

For in vitro research purposes only. Not intended for use in human or animals.
Activity Assay Protocol

Reaction Components

Active Kinase (Catalog #: P13-19DG)
Active TPM3-PDGFRB (0.05µg/µl) diluted with Kinase Dilution Buffer IV (Catalog #: K24-09) and assayed as outlined in sample activity plot. (Note: these are suggested working dilutions and it is recommended that the researcher perform a serial dilution of Active TPM3-PDGFRB for optimal results).

Kinase Dilution Buffer IV (Catalog #: K24-09)
Kinase Assay Buffer II (Catalog #: K02-09) diluted at a 1:4 ratio (5X dilution) with 50ng/µl BSA solution.

Kinase Assay Buffer II (Catalog #: K02-09)
Buffer components: 25mM MOPS, pH 7.2, 12.5mM β-glycerol-phosphate, 20mM MgCl2, 25mM MnCl2, 5mM EGTA, 2mM EDTA. Add 0.25mM DTT to Kinase Assay Buffer prior to use.

[^3P]-ATP Assay Cocktail
Prepare 250µM [^3P]-ATP Assay Cocktail in a designated radioactive working area by adding the following components: 150µl of 10mM ATP Stock Solution (Catalog #: A50-09), 100µl [^3P]-ATP (1mCi/100µl), 5.75ml of Kinase Assay Buffer II (Catalog #: K02-09). Store 1ml aliquots at -20°C.

10mM ATP Stock Solution (Catalog #: A50-09)
Prepare ATP stock solution by dissolving 55mg of ATP in 10ml of distilled H2O to a final concentration of 1mg/ml.

Substrate (Catalog #: I15-58)
IGF1Ride synthetic peptide substrate (KKKSPGEYVNIEFG) diluted in distilled H2O to a concentration of 1mg/ml.

Assay Protocol

Step 1. Thaw [^3P]-ATP Assay Cocktail in shielded container in a designated radioactive working area.
Step 2. Thaw the Active TPM3-PDGFRB, Kinase Assay Buffer, Substrate and Kinase Dilution Buffer on ice.
Step 3. In a pre-cooled microfuge tube, add the following reaction components bringing the initial reaction volume up to 20µl:

Component 1. 10µl of diluted Active TPM3-PDGFRB (Catalog #P13-19DG)
Component 2. 5µl of 1mg/ml stock solution of substrate (Catalog # I15-58)
Component 3. 5µl distilled H2O (4°C)

Step 4. Set up the blank control as outlined in step 3, excluding the addition of the substrate. Replace the substrate with an equal volume of distilled H2O.

Step 5. Initiate the reaction by the addition of 5 µl [^3P]-ATP Assay Cocktail bringing the final volume up to 25µl and incubate the mixture in a water bath at 30°C for 15 minutes.

Step 6. After the 15 minute incubation period, terminate the reaction by spotting 20 µl of the reaction mixture onto individual pre-cut strips of phosphocellulose P81 paper.

Step 7. Air dry the pre-cut P81 strip and sequentially wash in a 1% phosphoric acid solution (dilute 10ml of phosphoric acid and make a 1L solution with distilled H2O) with constant gentle stirring. It is recommended that the strips be washed a total of 3 intervals for approximately 10 minutes each.

Step 8. Count the radioactivity on the P81 paper in the presence of scintillation fluid in a scintillation counter.
Step 9. Determine the corrected cpm by removing the blank control value (see Step 4) for each sample and calculate the kinase specific activity as outlined below.

Calculation of [P[^3P]]-ATP Specific Activity (SA) (cpm/pmol)
Specific activity (SA) = cpm for 5 µl [^3P]-ATP / pmoles of ATP (in 5 µl of a 250 µM ATP stock solution, i.e., 1250 pmoles)

Kinase Specific Activity (SA) (pmol/min/µg or nmol/min/mg)
Corrected cpm from reaction / [(SA of ^3P-ATP in cpm/pmol)* (Reaction time in min)* (Enzyme amount in µg or mg)] / [(Reaction Volume) / (Spot Volume)]

To place your order, please contact us by phone 1-(604)-232-4600, fax 1-604-232-4601 or by email: orders@signalchem.com
www.signalchem.com

FOR IN VITRO RESEARCH PURPOSES ONLY. NOT INTENDED FOR USE IN HUMAN OR ANIMALS.