NIK, Active
Recombinant human protein expressed in Sf9 cells

Catalog # M22-11G
Lot # L2220-11

Product Description
Recombinant human NIK (325-end) was expressed by baculovirus in Sf9 insect cells using an N-terminal GST tag. The NIK gene accession number is NM_003954.

Gene Aliases
MAP3K14, HS, HSNIK, FTDCR1B

Formulation
Recombinant protein stored in 50mM Tris-HCl, pH 7.5, 150mM NaCl, 10mM glutathione, 0.1mM EDTA, 0.25mM DTT, 0.1mM PMSF, and 25% glycerol.

Storage and Stability
Store product at –70°C. For optimal storage, aliquot target into smaller quantities after centrifugation and store at recommended temperature. For most favorable performance, avoid repeated handling and multiple freeze/thaw cycles.

Scientific Background
NIK is a mitogen-activated protein kinase kinase kinase 14 (MAP3K14), which binds to TRAF2 and stimulates NF-kappaB activity. NIK shares sequence similarity with several other MAPKK kinases and participates in NF-kappaB-inducing signalling cascade common to receptors of the tumour-necrosis/nerve-growth factor (TNF/NGF) family and to the interleukin-1 type-I receptor. (1) NIK is expressed in primary human cells and in inflamed rheumatoid arthritis tissue and plays a selective role in signaling by the lymphotixin-beta receptor (2). NIK is a therapeutic target in the immune and bone-destructive components of inflammatory arthritis.

References

Specific Activity
The specific activity of NIK was determined to be 5.9 nmol/min/mg as per activity assay protocol, and was equivalent to 7.6 nmol/min/mg as per radiometric assay.

Purity
The purity of NIK was determined to be >85% by densitometry, approx. MW ~108kDa.

NIK, Active
Recombinant human protein expressed in Sf9 cells

Catalog # M22-11G
Specific Activity 5.9 nmol/min/mg
Lot # L2220-11
Purity >85%
Concentration 0.05 µg/µl
0.05 µg/µl from date of shipment
Storage & Shipping Store product at –70°C. For optimal storage, aliquot target into smaller quantities after centrifugation and store at recommended temperature. For most favorable performance, avoid repeated handling and multiple freeze/thaw cycles. Product shipped on dry ice.

FOR IN VITRO RESEARCH PURPOSES ONLY. NOT INTENDED FOR USE IN HUMAN OR ANIMALS.
Activity Assay Protocol

Reaction Components

Active Kinase (Catalog #: M22-11G)
Active NIK (0.05 µg/µl) diluted with Kinase Dilution Buffer X (1x) (Catalog #: K20-09) and assayed as outlined in sample activity plot. (Note: these are suggested working dilutions and it is recommended that the researcher perform a serial dilution of active NIK for optimal results).

ADP-GloTM Kinase Assay Kit (Promega, Cat # V9101)
ATP solution, 10 mM
ADP solution, 10 mM
ADP-Glo™ Reagent
Kinase Detection Reagent

Substrate (Catalog #: M42-51N)
Myelin Basic Protein (MBP) substrate diluted in distilled H2O to a final concentration of 1mg/ml.

Kinase Assay Buffer III (5x) (Catalog #: K03-09)
Buffer components: 200mM Tris-HCl, pH 7.4, 100mM MgCl2 and 0.5mg/ml BSA. Add fresh DTT prior to use to a final concentration of 250µM.

Kinase Dilution Buffer IX (1x) (Catalog #: K20-09)
Kinase Assay Buffer III (Catalog #: K03-09) diluted at a 1:4 ratio (5X dilution) with cold water. Add fresh DTT to the aliquot prior to use to a final concentration of 50µM.

Assay Protocol

The NIK assay is performed using the ADP-Glo™ Kinase Assay kit (Promega; Cat# V9101) which quantifies the amount of ADP produced by the NIK reaction. The ADP-Glo™ Reagent is added to terminate the kinase reaction and to deplete the remaining ATP, and then the Kinase Detection Reagent is added to convert ADP to ATP and to measure the newly synthesized ATP using luciferase/luciferin reaction.

Step 1. Thaw the Active NIK, Kinase Assay Buffer III (5x), and Substrate on ice. Prepare a 15 µL enzyme dilution at the desired concentration, with Kinase Dilution Buffer IX (1x), in a pre-chilled 96-well plate.

Step 2. Prepare a substrate/ATP mixture as follows (25 µM example):

<table>
<thead>
<tr>
<th>Component</th>
<th>Amount (µL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10µM ATP Solution</td>
<td>1</td>
</tr>
<tr>
<td>Substrate at 1mg/ml</td>
<td>80</td>
</tr>
<tr>
<td>Kinase Assay Buffer III (5x)</td>
<td>79</td>
</tr>
</tbody>
</table>

Step 3. Transfer the following reaction components prepared in Step 2 to a 384-well opaque plate bringing the reaction volume up to 5µL:

Component 1. 3µL of diluted Active NIK (Catalog # M22-11G).
Component 2. 2µL of Substrate/ATP mix as prepared in the table above. This initiates the reaction.

Step 4. Set up the blank control as outlined in step 2, excluding the addition of the kinase. Replace the kinase with an equal volume of Kinase Dilution Buffer IX (1x).

Step 5. Incubate at ambient temperature for 40 minutes.

Step 6. After the 40-minute incubation period, terminate the reaction and deplete the remaining ATP by adding 5µL of ADP-Glo™ Reagent. Spin down and shake the 384-well plate. Then incubate the reaction mixture for another 40 minutes at ambient temperature.

Step 7. Then add 10µL of the Kinase Detection Reagent to the 384-well plate and incubate the reaction mixture for another 30 minutes at ambient temperature.

Step 8. Read the 384-well reaction plate using the Luminescence Module Protocol on a GloMax®-Multi Microplate Multimode Reader (Promega; Cat# E7061).

Step 9. Determine the corrected activity (RLU) by removing the blank control value (see Step 4) for each sample and calculate the kinase specific activity as outlined below.

Calculation of Specific Activity of ADP (RLU/pmol)

From ADP standard curve, determine RLU/pmol of ADP

Kinase Specific Activity (SA) (pmol/min/µg or nmol/min/mg)

Corrected RLU from reaction / {[SA of ADP in RLU/pmol]*[Reaction time in min]*[Enzyme amount in µg or mg]}

To place your order, please contact us by phone 1-(604)-232-4600, fax 1-604-232-4601 or by email: orders@signalchem.com
www.signalchem.com

FOR IN VITRO RESEARCH PURPOSES ONLY. NOT INTENDED FOR USE IN HUMAN OR ANIMALS.