

Catalogue #	Aliquot Size
F16-11G-05	5 µg
F16-11G-10	10 µg
F16-11G-20	20 µg

FER, Active

Rrecombinant protein expressed in Sf9 cells

Catalog # F16-11G Lot # L231-3

Product Description

Recombinant mouse FER (542-end) was expressed by baculovirus in Sf9 insect cells using an N-terminal GST tag. The gene accession number is <u>NM 001037997</u>.

Gene Aliases

Fert, Fert2, AV082135, C330004K01Rik

Formulation

Recombinant protein stored in 50mM Tris-HCl, pH 7.5, 150mM NaCl, 0.25mM DTT, 0.1mM EGTA, 0.1mM EDTA, 0.1mM PMSF, 25% glycerol.

Storage and Stability

Store product at -70°C. For optimal storage, aliquot target into smaller quantities after centrifugation and store at recommended temperature. For most favorable performance, avoid repeated handling and multiple freeze/thaw cycles.

Scientific Background

FER is a member of the FPS/FES family of nontransmembrane receptor tyrosine kinases. FER plays a role in regulating cytoskeletal rearrangements and inside out signaling that accompany receptor ligand, cell matrix and cell-cell interactions (1). Genetic analysis using transgenic mouse models implicate FER in the regulation of inflammation and innate immunity. FER-deficient mice displayed enhanced recruitment of leukocytes in response to local LPS challenge. FER is required for cellcycle progression in malignant cells. Decreasing the level of FER using RNAi impeded the proliferation of prostate and breast carcinoma cells and led to their arrest at the G0/G1 phase (2).

References

- 1. Greer, P.: Closing in on the biological functions of Fps/Fes and Fer. Nat Rev Mol Cell Biol. 2002 Apr;3(4):278-89.
- 2. Pasder, O. et al: Downregulation of Fer induces PP1 activation and cell-cycle arrest in malignant cells. Oncogene. 2006 Jul 13;25(30):4194-206.

Specific Activity

The specific activity of FER was determined to be **680** nmol/min/mg as per activity assay protocol.

Purity

The purity of FER was determined to be **>85%** by densitometry, approx. MW **59kDa**.

FER, Active

Recombinant protein expressed in Sf9 cells

Catalog Number Specific Activity Specific Lot Number Purity Concentration Stability Storage & Shipping Purity Storage & Shipping Storage & Shipping

F16-TIG 680 nmol/min/mg L231-3 >85% 0.1 μg/μl 1yr at -70°C from date of shipment Store product at -70°C. For optimal storage, aliquot target into smaller quantities after centrifugation and store at recommended temperature. For most favorable performance, avoid repeated handling and multiple freeze/thaw cycles. Product shipped on dry ice.

To place your order, please contact us by phone 1-(604)-232-4600, fax 1-604-232-4601 or by email: <u>orders@signalchem.com</u> <u>www.signalchem.com</u>

Activity Assay Protocol

Reaction Components

Active Kinase (Catalog #: F16-11G)

Active FER $(0.1\mu g/\mu I)$ diluted with Kinase Dilution Buffer VII (Catalog #: K27-09) and assayed as outlined in sample activity plot. (Note: these are suggested working dilutions and it is recommended that the researcher perform a serial dilution of Active FER for optimal results).

Kinase Dilution Buffer VII (Catalog #: K27-09)

Kinase Assay Buffer I (Catalog #: K01-09) diluted at a 1:4 ratio (5X dilution) with $50ng/\mu I$ BSA and 5% glycerol solution.

Kinase Assay Buffer I (Catalog #: K01-09)

Buffer components: 25mM MOPS, pH 7. 2, 12.5mM β -glycerol-phosphate, 25mM MgC1₂, 5mM EGTA, 2mM EDTA. Add 0.25mM DTT to Kinase Assay Buffer prior to use.

[^{33P}]-ATP Assay Cocktail

Prepare 250µM [³³P]-ATP Assay Cocktail in a designated radioactive working area by adding the following components: 150µl of 10mM ATP Stock Solution (Catalog #: **A50-09**), 100µl [³³P]-ATP (1mCi/100µl), 5.75ml of Kinase Assay Buffer I (Catalog #: **K01-09**). Store 1ml aliquots at -20°C.

10mM ATP Stock Solution (Catalog #: A50-09)

Prepare ATP stock solution by dissolving 55mg of ATP in 10ml of Kinase Assay Buffer I (Catalog #: K01-09). Store 200μ l aliquots at -20° C.

Substrate (Catalog #: P61-58)

Poly (4:1 Glu, Tyr) synthetic peptide substrate diluted in distilled H_2O to a final concentration of 1mg/ml.

Assay Protocol

- Step 1. Thaw [33P]-ATP Assay Cocktail in shielded container in a designated radioactive working area.
- Step 2. Thaw the Active FER, Kinase Assay Buffer, Substrate and Kinase Dilution Buffer on ice.
- **Step 3.** In a pre-cooled microfuge tube, add the following reaction components bringing the initial reaction volume up to 20μl:

Component 1. 10µl of diluted Active FER (Catalog #F16-11G)

Component 2. 5µl of 1mg/ml stock solution of substrate (Catalog #P61-58)

Component 3. 5µl of distilled H₂O

- Step 4. Set up the blank control as outlined in step 3, excluding the addition of the substrate. Replace the substrate with an equal volume of distilled H₂O.
- Step 5. Initiate the reaction by the addition of 5 μl [³³P]-ATP Assay Cocktail bringing the final volume up to 25μl and incubate the mixture in a water bath at 30°C for 15 minutes.
- **Step 6.** After the 15 minute incubation period, terminate the reaction by spotting 20 μl of the reaction mixture onto individual pre-cut strips of phosphocellulose P81 paper.
- Step 7. Air dry the pre-cut P81 strip and sequentially wash in a 1% phosphoric acid solution (dilute 10ml of phosphoric acid and make a 1L solution with distilled H₂O) with constant gentle stirring. It is recommended that the strips be washed a total of 3 intervals for approximately 10 minutes each.
- Step 8. Count the radioactivity on the P81 paper in the presence of scintillation fluid in a scintillation counter.
- Step 9. Determine the corrected cpm by removing the blank control value (see Step 4) for each sample and calculate the kinase specific activity as outlined below.

Calculation of [³³P]-ATP Specific Activity (SA) (cpm/pmol)

Specific activity (SA) = cpm for 5 µl [^{33P}]-ATP / pmoles of ATP (in 5 µl of a 250 µM ATP stock solution, i.e., 1250 pmoles)

Kinase Specific Activity (SA) (pmol/min/µg or nmol/min/mg)

Corrected cpm from reaction / [(SA of ^{33P}-ATP in cpm/pmol)*(Reaction time in min)*(Enzyme amount in µg or mg)]*[(Reaction Volume) / (Spot Volume)]

To place your order, please contact us by phone 1-(604)-232-4600, fax 1-604-232-4601 or by email: <u>orders@signalchem.com</u> <u>www.signalchem.com</u>

FOR IN VITRO RESEARCH PURPOSES ONLY. NOT INTENDED FOR USE IN HUMAN OR ANIMALS.