

Catalog # Aliquot Size

\$33-10G -05 \$33-10G -10 5 μg 10 μg

DRAK1 (STK17A), Active

Recombinant full-length protein expressed in Sf9 cells

Catalog # \$33-10G

Lot # T1063-2

Product Description

Recombinant full-length human DRAK1 (STK17A) was expressed by baculovirus in Sf9 insect cells using an N-terminal GST tag. The DRAK1 (STK17A) gene accession number is NM 004760.

Gene Aliases

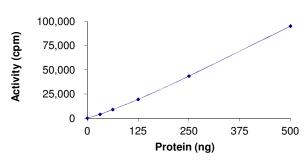
DRAK1; STK17A

Formulation

Recombinant protein stored in 50mM Tris-HCl, pH 7.5, 150mM NaCl, 10mM glutathione, 0.1mM EDTA, 0.25mM DTT, 0.1mM PMSF, 25% glycerol.

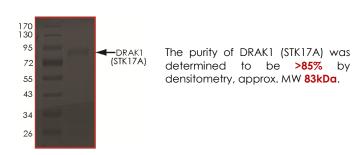
Storage and Stability

Store product at -70° C. For optimal storage, aliquot target into smaller quantities after centrifugation and store at recommended temperature. For most favorable performance, avoid repeated handling and multiple freeze/thaw cycles.


Scientific Background

DRAK1 (STK17A) is a member of the DAP kinase-related apoptosis-inducing protein kinase family. DRAK1 encodes an autophosphorylated nuclear protein with a protein kinase domain which has apoptosis-inducing activity. DRAK1 is capable of autophosphorylation and of phosphorylating myosin light chain as an exogenous substrate. The noncatalytic C terminus of DRAK1 is crucial for full kinase activity (1). DRAK1 is highly expressed in placenta, but also in heart, lung, skeletal muscle, kidney, and pancreas. DRAK1 act as a novel direct target of p53 and a modulator of cisplatin toxicity and reactive oxygen species in testicular cancer cells (2).

References


- Sanjo, H. et.al: DRAKs, novel serine/threonine kinases related to death-associated protein kinase that trigger apoptosis. J. Biol. Chem. 273: 29066-29071, 1998.
- Mao P, et.al: Serine/threonine kinase 17A is a novel p53 target gene and modulator of cisplatin toxicity and reactive oxygen species in testicular cancer cells. J Biol Chem. 2011 Jun 3;286(22):19381-91.

Specific Activity

The specific activity of DRAK1 (STK17A) was determined to be **8.5** nmol /min/mg as per activity assay protocol.

Purity

DRAK1 (STK17A), Active

Recombinant full-length human protein expressed in Sf9 cells

Catalog #
Specific Activity
Lot #
Purity
Concentration
Stability

Storage & Shipping

\$33-10G 8.5 nmol/min/mg T1063-2 >85% 0.1 ug/ul

1yr at -70°C from date of shipment

Store product at -70°C. For optimal storage, aliquot target into smaller quantities after centrifugation and store at recommended temperature. For most favorable performance, avoid repeated handling and multiple freeze/thaw cycles. Product shipped on dry ice.

To place your order, please contact us by phone 1-(604)-232-4600, fax 1-604-232-4601 or by email: orders@signalchem.com www.signalchem.com

Activity Assay Protocol

Reaction Components

Active Kinase (Catalog #: S33-10G)

Active DRAK1 (STK17A) (0.1 μ g/ μ l) diluted with Kinase Dilution Buffer III (Catalog #: K23-09) and assayed as outlined in sample activity plot. (Note: these are suggested working dilutions and it is recommended that the researcher perform a serial dilution of Active DRAK1 (STK17A) for optimal results).

Kinase Dilution Buffer III (Catalog #: K23-09)

Kinase Assay Buffer I (Catalog #: K01-09) diluted at a 1:4 ratio (5X dilution) with 50ng/µl BSA solution.

Kinase Assay Buffer I (Catalog #: K01-09)

Buffer components: 25mM MOPS, pH 7. 2, 12.5mM β -glycerol-phosphate, 25mM MgC1₂, 5mM EGTA, 2mM EDTA. Add 0.25mM DTT to Kinase Assay Buffer prior to use.

[33P]-ATP Assay Cocktail

Prepare 250 μ M [33 P]-ATP Assay Cocktail in a designated radioactive working area by adding the following components: 150 μ l of 10mM ATP Stock Solution (Catalog #: A50-09), 100 μ l [33 P]-ATP (1mCi/100 μ l), 5.75ml of Kinase Assay Buffer I (Catalog #: K01-09). Store 1ml aliquots at -20°C.

10mM ATP Stock Solution (Catalog #: A50-09)

Prepare ATP stock solution by dissolving 55mg of ATP in 10ml of Kinase Assay Buffer I (Catalog #: K01-09). Store 200 μ l aliquots at -20° C.

Substrate (Catalog #: M56-58)

MRCL3 Peptide substrate (KKRPQRATSNVFAM-NH2) diluted in distilled H_2O to a final concentration of 1mg/ml.

Assay Protocol

- Step 1. Thaw [33P]-ATP Assay Cocktail in shielded container in a designated radioactive working area.
- Step 2. Thaw the Active DRAK1 (STK17A), Kinase Assay Buffer, Substrate and Kinase Dilution Buffer on ice.
- Step 3. In a pre-cooled microfuge tube, add the following reaction components bringing the initial reaction volume up to 20ul:

Component 1. 10µl of diluted Active DRAK1 (STK17A) (Catalog #S33-10G)

Component 2. 5µl of 1mg/ml stock solution of substrate (Catalog #M56-58)

Component 3. 5µl distilled H₂O (4°C)

- Step 4. Set up the blank control as outlined in step 3, excluding the addition of the substrate. Replace the substrate with an equal volume of distilled H₂O.
- Step 5. Initiate the reaction by the addition of 5 μ l [33 P]-ATP Assay Cocktail bringing the final volume up to 25 μ l and incubate the mixture in a water bath at 30°C for 15 minutes.
- Step 6. After the 15 minute incubation period, terminate the reaction by spotting 20 µl of the reaction mixture onto individual pre-cut strips of phosphocellulose P81 paper.
- **Step 7.** Air dry the pre-cut P81 strip and sequentially wash in a 1% phosphoric acid solution (dilute 10ml of phosphoric acid and make a 1L solution with distilled H₂O) with constant gentle stirring. It is recommended that the strips be washed a total of 3 intervals for approximately 10 minutes each.
- Step 8. Count the radioactivity on the P81 paper in the presence of scintillation fluid in a scintillation counter.
- **Step 9.** Determine the corrected cpm by removing the blank control value (see Step 4) for each sample and calculate the kinase specific activity as outlined below.

Calculation of [P³³]-ATP Specific Activity (SA) (cpm/pmol)

Specific activity (SA) = cpm for 5 µ1 [33P]-ATP / pmoles of ATP (in 5 µ1 of a 250 µM ATP stock solution, i.e., 1250 pmoles)

Kinase Specific Activity (SA) (pmol/min/μg or nmol/min/mg)

Corrected cpm from reaction / [(SA of 33 P-ATP in cpm/pmol)*(Reaction time in min)*(Enzyme amount in μg or mg)]*[(Reaction Volume)]

To place your order, please contact us by phone 1-(604)-232-4600, fax 1-604-232-4601 or by email: orders@signalchem.com www.signalchem.com