Catalogue \#	Aliquot Size
P13-11G-05	$5 \mu \mathrm{~g}$
P13-11G-10	$10 \mu \mathrm{~g}$
P13-11G-20	$20 \mu \mathrm{~g}$

PDGFR β, Active

Recombinant human protein expressed in Sf9 cells

Catalog \# P13-11G

Lot \# W164-2

Product Description

Recombinant human PDGFR β (557-end) was expressed by baculovirus in $\mathrm{Sf9}$ insect cells using an N -terminal GST tag. The gene accession number is NM_002609.

Gene Aliases

JTK12; PDGFR; CD140B; PDGFR1; PDGF-R-beta

Formulation

Recombinant protein stored in 50 mM Tris- $\mathrm{HCl}, \mathrm{pH} 7.5$, $150 \mathrm{mM} \mathrm{NaCl}, 10 \mathrm{mM}$ glutathione, 0.1 mM EDTA, 0.25 mM DTT, 0.1 mM PMSF, 25% glycerol.

Storage and Stability

Store product at $-70^{\circ} \mathrm{C}$. For optimal storage, aliquot target into smaller quantities after centrifugation and store at recommended temperature. For most favorable performance, avoid repeated handling and multiple freeze/thaw cycles.

Scientific Background

PDGFR β (platelet-derived growth factor receptor β) is a member of the PDGFR family of membrane receptors with intrinsic tyrosine kinase activity. PDGFR β deficient mice are hemorrhagic, severely anemic and exhibit a defect in kidney glomeruli function (1). However, absence of PDGFR β has no impact on major blood vessels and the heart. PDGFR β expression and activity is elevated in several cancers and inhibition of PDGFR β activity blocks progression of renal carcinoma in an animal model (2).

References

1. Soriano, P: Abnormal kidney development and hematological disorders in PDGF beta-receptor mutant mice. Genes Dev. 1994 Aug 15;8(16):1888-96.
2. Xu , L. et al: Blocking platelet-derived growth factor-D/platelet-derived growth factor receptor beta signaling inhibits human renal cell carcinoma progression in an orthotopic mouse model. Cancer Res. 2005 Jul 1;65(13):5711-9.

Specific Activity

The specific activity of PDGFR β was determined to be 22 nmol /min/mg as per activity assay protocol.

Purity

The purity was determined to be >90\% by densitometry. Approx. MW 104kDa.

PDGFR β, Active

Recombinant human protein expressed in Sf9 cells

Catalog Number
Specific Activity
Specific Lot Number
P13-11G
$22 \mathrm{nmol} / \mathrm{min} / \mathrm{mg}$
W164-2
$>90 \%$
Concentration $0.1 \mu \mathrm{~g} / \mu \mathrm{l}$
Stability 1 yr at $-70^{\circ} \mathrm{C}$ from date of shipment
Storage \& Shipping Store product at $-70^{\circ} \mathrm{C}$. For optimal storage, aliquot target into smaller quantities after centrifugation and store at recommended temperature. For most favorable performance, avoid repeated handling and multiple freeze/thaw cycles. Product shipped on dry ice.

Activity Assay Protocol

Reaction Components

Active Kinase (Catalog \#: P13-11G)

Active PDGFR $3(0.1 \mu \mathrm{~g} / \mu \mathrm{l})$ diluted with Kinase Dilution Buffer IV (Catalog \#: K24-09) and assayed as outlined in sample activity plot. (Note: these are suggested working dilutions and it is recommended that the researcher perform a serial dilution of Active PDGFR β for optimal results).

Kinase Dilution Buffer IV (Catalog \#: K24-09)

Kinase Assay Buffer II (Catalog \#: K02-09) diluted at a 1:4 ratio (5 X dilution) with $50 \mathrm{ng} / \mu \mathrm{l}$ BSA solution.

Kinase Assay Buffer II (Catalog \#: K02-09)
Buffer components: 25 mM MOPS, pH 7.2, $12.5 \mathrm{mM} \beta$ -glycerol-phosphate, $20 \mathrm{mM} \mathrm{MgCl} 2,25 \mathrm{mM} \mathrm{MnCl} 2,5 \mathrm{mM}$ EGTA, 2 mM EDTA. Add 0.25 mM DTT to Kinase Assay Buffer prior to use.

[${ }^{33}$ P]-ATP Assay Cocktail

Prepare $250 \mu \mathrm{M}$ [${ }^{33} \mathrm{P}$]-ATP Assay Cocktail in a designated radioactive working area by adding the following components: $150 \mu \mathrm{l}$ of 10 mM ATP Stock Solution (Catalog \#: A50-09), $\left.100 \mu \mathrm{l}{ }^{[33 P}\right]$-ATP ($1 \mathrm{mCi} / 100 \mu \mathrm{l}$), 5.75 ml of Kinase Assay Buffer II (Catalog \#: K02-09). Store 1 ml aliquots at $-20^{\circ} \mathrm{C}$.

10mM ATP Stock Solution (Catalog \#: A50-09)

Prepare ATP stock solution by dissolving 55 mg of ATP in 10 ml of Kinase Assay Buffer II (Catalog \#: K02-09). Store 200 1 aliquots at $-20^{\circ} \mathrm{C}$.

Substrate (Catalog \#: P61-58)
Poly (4:1 Glu, Tyr) synthetic peptide substrate diluted in distilled $\mathrm{H}_{2} \mathrm{O}$ to a final concentration of $1 \mathrm{mg} / \mathrm{ml}$.

Assay Protocol

Step 1. Thaw [33P]-ATP Assay Cocktail in shielded container in a designated radioactive working area.
Step 2. Thaw the Active PDGFRß, Kinase Assay Buffer, Substrate and Kinase Dilution Buffer on ice.
Step 3. In a pre-cooled microfuge tube, add the following reaction components bringing the initial reaction volume up to $20 \mu \mathrm{l}$:

Component 1. 10 $\mu \mathrm{l}$ of diluted Active PDGFR β (Catalog \#P13-11G)
Component 2. $5 \mu \mathrm{l}$ of $1 \mathrm{mg} / \mathrm{ml}$ stock solution of substrate (Catalog \#P61-58)
Component 3. $5 \mu \mathrm{l}$ distilled $\mathrm{H}_{2} \mathrm{O}\left(4^{\circ} \mathrm{C}\right)$
Step 4. Set up the blank control as outlined in step 3, excluding the addition of the substrate. Replace the substrate with an equal volume of distilled $\mathrm{H}_{2} \mathrm{O}$.
Step 5. Initiate the reaction by the addition of $5 \mu \mathrm{l}$ [$\left.{ }^{33} \mathrm{P}\right]$-ATP Assay Cocktail bringing the final volume up to $25 \mu \mathrm{l}$ and incubate the mixture in a water bath at $30^{\circ} \mathrm{C}$ for 15 minutes.
Step 6. After the 15 minute incubation period, terminate the reaction by spotting $20 \mu \mathrm{l}$ of the reaction mixture onto individual pre-cut strips of phosphocellulose P81 paper.
Step 7. Air dry the pre-cut P81 strip and sequentially wash in a 1% phosphoric acid solution (dilute 10 ml of phosphoric acid and make a 1 L solution with distilled $\mathrm{H}_{2} \mathrm{O}$) with constant gentle stirring. It is recommended that the strips be washed a total of 3 intervals for approximately 10 minutes each.
Step 8. Count the radioactivity on the P 81 paper in the presence of scintillation fluid in a scintillation counter.
Step 9. Determine the corrected cpm by removing the blank control value (see Step 4) for each sample and calculate the kinase specific activity as outlined below.

Calculation of $\left[P^{33}\right]$-ATP Specific Activity (SA) (cpm/pmol)

Specific activity $(S A)=c p m$ for $5 \mu[$ [33P]-ATP / pmoles of ATP (in $5 \mu \mathrm{l}$ of a $250 \mu \mathrm{M}$ ATP stock solution, i.e., 1250 pmoles)

Kinase Specific Activity (SA) (pmol/min/ $\mu \mathrm{g}$ or nmol/min/mg)

Corrected cpm from reaction / [(SA of 33P-ATP in cpm/pmol)* (Reaction time in min)*(Enzyme amount in $\mu \mathrm{g}$ or $\mathrm{mg})]^{*}[($ Reaction Volume) / (Spot Volume)]

To place your order, please contact us by phone 1-(604)-232-4600, fax 1-604-232-4601 or by email: orders@signalchem.com www.signalchem.com

FOR IN VITRO RESEARCH PURPOSES ONLY. NOT INTENDED FOR USE IN HUMAN OR ANIMALS.

